Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Plant Sci ; 15: 1385210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721336

RESUMO

Understanding the genetic basis of local adaption is crucial in the context of global climate change. Mangroves, as salt-tolerant trees and shrubs in the intertidal zone of tropical and subtropical coastlines, are particularly vulnerable to climate change. Kandelia obovata, the most cold-tolerant mangrove species, has undergone ecological speciation from its cold-intolerant counterpart, Kandelia candel, with geographic separation by the South China Sea. In this study, we conducted whole-genome re-sequencing of K. obovata populations along China's southeast coast, to elucidate the genetic basis responsible for mangrove local adaptation to climate. Our analysis revealed a strong population structure among the three K. obovata populations, with complex demographic histories involving population expansion, bottleneck, and gene flow. Genome-wide scans unveiled pronounced patterns of selective sweeps in highly differentiated regions among pairwise populations, with stronger signatures observed in the northern populations compared to the southern population. Additionally, significant genotype-environment associations for temperature-related variables were identified, while no associations were detected for precipitation. A set of 39 high-confidence candidate genes underlying local adaptation of K. obovata were identified, which are distinct from genes under selection detected by comparison between K. obovata and its cold-intolerant relative K. candel. These results significantly contribute to our understanding of the genetic underpinnings of local adaptation in K. obovata and provide valuable insights into the evolutionary processes shaping the genetic diversity of mangrove populations in response to climate change.

2.
Front Immunol ; 14: 1258778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691924

RESUMO

Introduction: The porcine reproductive and respiratory syndrome virus (PRRSV) continues to pose a significant threat to the global swine industry, attributed largely to its immunosuppressive properties and the chronic nature of its infection. The absence of effective vaccines and therapeutics amplifies the urgency to deepen our comprehension of PRRSV's intricate pathogenic mechanisms. Previous transcriptomic studies, although informative, are partially constrained by their predominant reliance on in vitro models or lack of long-term infections. Moreover, the role of circular RNAs (circRNAs) during PRRSV invasion is yet to be elucidated. Methods: In this study, we employed an in vivo approach, exposing piglets to a PRRSV challenge over varied durations of 3, 7, or 21 days. Subsequently, porcine alveolar macrophages were isolated for a comprehensive transcriptomic investigation, examining the expression patterns of mRNAs, miRNAs, circRNAs, and long non-coding RNAs (lncRNAs). Results: Differentially expressed RNAs from all four categories were identified, underscoring the dynamic interplay among these RNA species during PRRSV infection. Functional enrichment analyses indicate that these differentially expressed RNAs, as well as their target genes, play a pivotal role in immune related pathways. For the first time, we integrated circRNAs into the lncRNA-miRNA-mRNA relationship, constructing a competitive endogenous RNA (ceRNA) network. Our findings highlight the immune-related genes, CTLA4 and SAMHD1, as well as their associated miRNAs, lncRNAs, and circRNAs, suggesting potential therapeutic targets for PRRS. Importantly, we corroborated the expression patterns of selected RNAs through RT-qPCR, ensuring consistency with our transcriptomic sequencing data. Discussion: This study sheds lights on the intricate RNA interplay during PRRSV infection and provides a solid foundation for future therapeutic strategizing.


Assuntos
MicroRNAs , Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Longo não Codificante , Animais , Suínos , RNA Circular/genética , MicroRNAs/genética , RNA Mensageiro/genética , RNA Longo não Codificante/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Transcriptoma , Macrófagos Alveolares
3.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869744

RESUMO

With a possible origin from bats, the alphacoronavirus Porcine epidemic diarrhea virus (PEDV) causes significant hazards and widespread epidemics in the swine population. However, the ecology, evolution, and spread of PEDV are still unclear. Here, from 149,869 fecal and intestinal tissue samples of pigs collected in an 11-year survey, we identified PEDV as the most dominant virus in diarrheal animals. Global whole genomic and evolutionary analyses of 672 PEDV strains revealed the fast-evolving PEDV genotype 2 (G2) strains as the main epidemic viruses worldwide, which seems to correlate with the use of G2-targeting vaccines. The evolving pattern of the G2 viruses presents geographic bias as they evolve tachytely in South Korea but undergo the highest recombination in China. Therefore, we clustered six PEDV haplotypes in China, whereas South Korea held five haplotypes, including a unique haplotype G. In addition, an assessment of the spatiotemporal spread route of PEDV indicates Germany and Japan as the primary hubs for PEDV dissemination in Europe and Asia, respectively. Overall, our findings provide novel insights into the epidemiology, evolution, and transmission of PEDV, and thus may lay a foundation for the prevention and control of PEDV and other coronaviruses.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Coronavirus , Vírus da Diarreia Epidêmica Suína , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/genética , Filogenia , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária
4.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35687719

RESUMO

Due to extensive pleiotropy, trans-acting elements are often thought to be evolutionarily constrained. While the impact of trans-acting elements on gene expression evolution has been extensively studied, relatively little is understood about the contribution of a single trans regulator to interspecific expression and phenotypic divergence. Here, we disentangle the effects of genomic context and miR-983, an adaptively evolving young microRNA, on expression divergence between Drosophila melanogaster and D. simulans. We show miR-983 effects promote interspecific expression divergence in testis despite its antagonism with the often-predominant context effects. Single-cyst RNA-seq reveals that distinct sets of genes gain and lose miR-983 influence under disruptive or diversifying selection at different stages of spermatogenesis, potentially helping minimize antagonistic pleiotropy. At the round spermatid stage, the effects of miR-983 are weak and distributed, coincident with the transcriptome undergoing drastic expression changes. Knocking out miR-983 causes reduced sperm length with increased within-individual variation in D. melanogaster but not in D. simulans, and the D. melanogaster knockout also exhibits compromised sperm defense ability. Our results provide empirical evidence for the resolution of antagonistic pleiotropy and also have broad implications for the function and evolution of new trans regulators.


Assuntos
Drosophila , MicroRNAs , Animais , Drosophila/genética , Drosophila melanogaster/genética , Masculino , MicroRNAs/genética , Sêmen , Especificidade da Espécie , Espermatogênese/genética
5.
Vet Microbiol ; 256: 109043, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33780804

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) causes substantial economic losses to the global pig industry. Members of the tripartite motif (TRIM) family are the important effectors of the innate immune response against viral infections. We have previously characterized the entire porcine TRIM (pTRIM) family, and predicted pTRIM5, 14, 21, 25 and 38 as host restriction factors against PRRSV infection. However, little is known about whether and how pTRIMs restrict the infection of PRRSV. In this study, we firstly performed the amino acid alignments of the RING domain of pTRIM5, 21, 25 and 38, and found that pTRIM proteins contained the characteristic consensus C3HC4 type zinc-binding motif which is important for the ubiquitination function. Then we detected the mRNA changes of pTRIMs in porcine alveolar macrophages (PAMs) by transcriptome sequencing after PRRSV infection in piglets. Transcriptional profiles showed that the expression of pTRIM5, 21 and 26 was significantly (P < 0.05) up-regulated, consistent with their expression in vitro. Finally, as the most up-regulated gene after PRRSV infection both in vivo and in vitro, pTRIM21 was investigated for its anti-PRRSV activity in immortalized PAMs (iPAMs) in two aspects: knockdown and overexpression of pTRIM21. Knockdown of endogenic pTRIM21 could significantly promote PRRSV replication at 12 and 24 h post infection in iPAMs. Meanwhile, overexpression of pTRIM21 could significantly suppress PRRSV replication but not affect its attachment and endocytosis. Moreover, pTRIM21 RING-finger E3 ubiquitin ligase was essential for anti-PRRSV activity. Our data enhance our understanding of the pTRIMs against PRRSV infection, which may help us develop novel therapeutic tools to control PRRSV.


Assuntos
Imunidade Inata , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Antivirais , Expressão Gênica , Perfilação da Expressão Gênica , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Família Multigênica , Filogenia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Distribuição Aleatória , Alinhamento de Sequência/veterinária , Análise de Sequência de RNA/veterinária , Suínos , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Regulação para Cima , Replicação Viral
6.
Virus Res ; 292: 198229, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33207263

RESUMO

Infectious bronchitis virus (IBV) of GI-19 (QX), GI-7 (TW), GI-13 (4/91) and GI-1 (Mass) lineages have been frequently detected in China in recent years. Here, An IBV strain, referred as GD17/04, was isolated from the dead yellow feather chicken vaccinated with H52 and 4/91 vaccines, whose genome sequence was obtained through high-throughput sequencing. Then it has been confirmed by the RDP and SimPlot analysis that GD17/04 is a recombinant strain deriving from YX10, 4/91, TW 2575/98 and H52 strains. Therein S1 gene of GD17/04 consists of sequences of TW2575/98 and 4/91, the former for the region of 20,371 to 21,072 nt and 21,847 to 21,975 nt, the latter for the sandwiched region of 21,073 to 21,846 nt. Moreover, as a nephropathogenic variant which caused high morbidity of 100 % and mortality of 60 %, unlike most other IBV strains, GD17/04 can cause obvious cell lesion in primary CEK cell, and even in DF-1 cells, without the process of continuous passage. As the few IBV strain can infect avian passage cell line, GD17/04 provides a material basis for further study of the interaction mechanism between IBV and avian host. Collectively, the findings highlight the significance that biological characteristics of novel strain should be studied, in addition to constant epidemiologic and molecular surveillance for IBV.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/patogenicidade , Doenças das Aves Domésticas/virologia , Animais , Linhagem Celular , Galinhas , China , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Genoma Viral , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/fisiologia , Filogenia , Doenças das Aves Domésticas/mortalidade , Recombinação Genética , Virulência
7.
Vet Microbiol ; 242: 108579, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32122588

RESUMO

In China, variants of infectious bronchitis virus (IBV) evolve continually and diverse recombinant strains have been reported. Here, an IBV strain, designated as ck/CH/LJX/2017/07 (referred as JX17) was isolated from chicken vaccinated with H120 and 4/91 in Jiangxi, China, in 2017. Sequence analysis reveals of the S1 gene of JX17 the highest nucleotide identity of 98.15% with that of GI-7 genotype TW2575/98 strain. Furthermore, whole genome analysis among JX17 and other 18 IBV strains demonstrates that JX17 has the highest nucleotide identity of 95.94% with GI-19 genotype YX10 strain. Among all genes of JX17 except the S1 gene, the N gene and 3' UTR have the highest identity to GI-13 genotype 4/91 strain and the rest genes are the most identical to GI-19 genotype YX10 strain. Analyzed by the RDP and SimPlot, the recombination of JX17 strain was shown to occur in regions which include 5'-terminal S1 gene (20,344 to 22,447 nt), most N gene and 3' UTR (26,163 to 27,648 nt). The pathogenicity study shows that JX17 is a natural low virulent IBV variant which caused respiratory symptoms but no death. Taken together, these results indicate that IBV strains continue to evolve through genetic recombination and three prevalent genotypes in China including QX, TW and 4/91 have started to recombine.


Assuntos
Infecções por Coronavirus/veterinária , Genoma Viral , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/patogenicidade , Vírus Reordenados/genética , Recombinação Genética , Animais , Galinhas/virologia , China , Infecções por Coronavirus/virologia , Evolução Molecular , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Bronquite Infecciosa/classificação , Filogenia , Doenças das Aves Domésticas/virologia , RNA Viral/genética , Vírus Reordenados/patogenicidade , Sequenciamento Completo do Genoma
8.
Vet Microbiol ; 239: 108489, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31767069

RESUMO

Porcine enteric alphacoronavirus (PEAV) is a newly identified swine enteropathogenic coronavirus that causes watery diarrhea in newborn piglets. In this study, an original, highly virulent PEAV strain GDS04 was serially passaged in Vero cells. The virus titers and sizes of syncytia increased gradually with the cell passages. Newborn piglets were orally inoculated with PEAV P15, P67 and P100. Compared with P15 and P67, P100 resulted in only mild clinical signs and intestinal lesions in piglets. The virus shedding in feces and viral antigens in intestinal tract were markedly reduced in P100-inoculated piglets. Importantly, all P100-inoculated newborn piglets survived, indicating that P100 was an attenuated variant. Sequence analysis revealed that the virulent strain GDS04 had four, one, six and eleven amino acid differences in membrane, nucleocapsid, spike and ORF1ab proteins, respectively, from P100. Furthermore, more differences in the predicted three-dimensional structure of S protein between GDS04 and P100 were observed, indicating that these differences might be associated with the pathogenicity of PEAV. Collectively, our research successfully prepared a PEAV attenuated variant which might serve as a live attenuated vaccine candidate against PEAV infection.


Assuntos
Alphacoronavirus/patogenicidade , Infecções por Coronavirus/veterinária , Virulência/genética , Animais , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Mutação , Células Vero
9.
Virus Res ; 270: 197647, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260706

RESUMO

Members of the tripartite motif (TRIM) family are the important effectors of the innate immune response against viral infections. However, it is still unknown whether porcine TRIM (pTRIM) genes may restrict the infection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine epidemic diarrhea virus (PEDV). In this study, we firstly defined the entire pTRIM family. Fifty-seven pTRIMs were classified into 12 sub-families (C-I to C-XII) based on variable C-terminus, and 17 out of them were identified as positively selected genes. Nine pTRIMs were identified as the IFN-stimulated genes in IFN-ß treated porcine alveolar macrophages (PAMs). Twelve pTRIMs were regulated in PRRSV or PEDV-infected PAMs, respectively. The mRNA expression of the implicated restriction factors (pTRIM5, 14, 21, 25 and 38) was detectable in all swine tissues studied, with the high expression in the spleen and lung tissues. These results firstly present the comprehensive characterization of pTRIM genes, and suggest the pTRIM5, 14, 21, 25, and 38 genes as the implicated host restriction factors against PRRSV and PEDV infection, which provide a basis to further study the functions of pTRIMs and the mechanism by which pTRIMs may act during viral infection.


Assuntos
Infecções por Coronavirus/genética , Interações entre Hospedeiro e Microrganismos , Síndrome Respiratória e Reprodutiva Suína/genética , Proteínas com Motivo Tripartido/genética , Animais , Infecções por Coronavirus/imunologia , Evolução Molecular , Imunidade Inata , Interferon beta/farmacologia , Pulmão/virologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Diarreia Epidêmica Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos/genética , Suínos/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Proteínas com Motivo Tripartido/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA